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Infragravity waves induced by short-wave groups 
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A theoretical model for infragravity waves generated by incident short-wave groups 
is developed. Both normal and oblique short-wave incidence is considered. The 
depth-integrated conservation equations for mass and momentum averaged over a 
short-wave period are equivalent to the nonlinear shallow-water equations with a 
forcing term. In  linearized form these equations combine to a second-order long- 
wave equation including forcing, and this is the equation we solve. The forcing term 
is expressed in terms of the short-wave radiation stress, and the modelling of these 
short waves in regard to their breaking and dynamic surf zone behaviour is essential. 
The model takes into account the time-varying position of the initial break point as 
well as a (partial) transmission of grouping into the surf zone. The former produces 
a dynamic set-up, while the latter is equivalent to  the short-wave forcing that takes 
place outside the surf zone. These two effects have a mutual dependence which is 
modelled by a parameter K ,  and their relative strength is estimated. Before the waves 
break, the standard assumption of energy conservation leads to a variation of the 
radiation stress, which causes a bound, long wave, and the shoaling bottom results 
in a modification of the solution known for constant depth. The respective effects of 
this incident bound, long wave and of oscillations of the break-point position are 
shown to be of the same order of magnitude, and they oppose each other to some 
extent. The transfer of energy from the short waves to waves at infragravity 
frequencies is analysed using the depth-integrated conservation equation of energy. 
For the case of normally incident groups a semi-analytical steady-state solution for 
the infragravity wave motion is given for a plane beach and small primary-wave 
modulations. Examples of the resulting surface elevation as well as the corresponding 
particle velocity and mean infragravity-wave energy flux are presented. Also the 
sensitivity to the variation of input parameters is analysed. The model results are 
compared with laboratory experiments from the literature. The qualitative 
agreement is good, but quantitatively the model overestimates the infragravity wave 
activity. This can, in part, be attributed to the neglect of frictional effects. 

1. Introduction 
The irregularities present in any natural wavetrain are responsible for higher-order 

fluctuations of the mean water surface. Particularly when the waves have a 
pronounced grouping, these fluctuations appear as long waves at  the group 
frequency, and it is the purpose of the present work to study this long-wave motion 
in the nearshore. Typically the periods of this motion are of the order of several 
minutes, and the term infragravity waves has become customary for the phenomenon. 
The original term surf beats was used by Munk (1949) and Tucker (1950), who were 
probably the first to report field measurements of this kind of oscillation. Both these 
authors observed low-frequency disturbances, which were apparently correlated to 
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groups of high waves after a time lag, approximately equal to the time required for 
the waves to travel from the wave recorder to the coastline, and return at the long- 
wave speed. 

In  the early sixties Longuet-Higgins & Stewart (1962, 1964) developed the theory 
of radiation stress, by which they explained how groups of high waves are 
accompanied by a depression of the mean water surface. In  other words, groups of 
short waves force a long wave, which is known as the set-down (wave) or the bound, 
long wave. Because of the time lag the low-frequency oscillations observed by Munk 
and Tucker could not be explained as the bound, long wave itself, but rather as its 
reflection from the coastline once it was released owing to the short-wave breaking. 

In  recent decades numerous observations have shown that the energy at surf beat 
frequencies can be substantial, and in some cases even exceed that of the short waves 
(Wright, Guza & Short 1982). Likewise, the shoreline amplitudes arising from 
infragravity waves can be comparable to the run-up height of the short waves (Guza 
& Thornton 1982, 1985). 

Symonds, Huntley & Bowen (1982) were the first to consider the effect of 
oscillations of the break-point position, and they showed that this provides a 
mechanism of infragravity wave generation in addition to the direct forcing from 
short-wave grouping. Related works are the numerical approaches of Lo (1988), 
Nakaza & Hino (1991), and Roelvink (1991) and the spectral model of Van Leeuwen 
& Battjes (1990). Furthermore, Symonds & Bowen (1984) extended the work of 
Symonds et al. (1982) to include an offshore bar. 

Theories concerning offshore long-wave generation by short-wave groups are also 
relevant to the present work. In  the open sea Molin (1982) showed that for deep- 
water short waves the passage of groups over discontinuities in the bottom slope 
results in the emission of free, long waves in addition to the bound, long waves that 
are present. Mei & Benmoussa (1984) generalized these results to obliquely incident 
groups and an arbitrary depth relative to the short-wave motion. The equations 
behind this work came from a WKB-expansion by Chu & Mei (1970), and they are 
equivalent to the conservation equations of mass and momentum also used by 
Symonds et al. (1982). Liu (1989) suggested a different method of solution and gave 
corrections to the boundary conditions used by Mei & Benmoussa. 

With the restriction of constant depth, other related works are Bowers (1977), who 
showed that bound, long waves are a possible source of harbour resonance (see also 
the more recent developments by Mei & Agnon 1989; Wu & Liu, 1990); Ottesen 
Hansen (1978), who treated long waves forced by a spectrum of short waves; and 
Sand (1982), who analysed the impact of these long waves on laboratory models, see 
also the recent development by Schaffer (1993). 

In  the present work we use the linearized depth-integrated conservation equations 
for mass and momentum which combine to a second-order long-wave equation with 
a forcing term (Symonds et al. 1982 and others). The forcing term is expressed in 
terms of the short-wave radiation stress, and the modelling of these short waves in 
regard to their breaking and surf zone dynamics is essential. The model takes into 
account the time-varying position of the initial break point as well as a (partial) 
transmission of grouping into the surf zone. The basic formulation ($2 and $3) is 
given for both normal and oblique incidence of the short-wave groups, whereas the 
solution is confined to normal incidence for a one-dimensional topography. 

In $ 2  we formulate the governing equation for the infragravity waves and 
introduce a new modelling of the surf zone dynamics for incident groups. 

Section 3 concerns the transfer of energy from the short waves to waves at 
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infragravity frequencies. This involves the depth-integrated conservation equation 
of energy. 

For normally incident groups with small modulations a semi-analytical steady- 
state solution for the infragravity wave motion on a plane beach is given in $4, and 
in a number of examples the resulting surface elevation as well as particle velocity 
and the mean infragravity-wave energy flux are presented. The results are compared 
with the theory of Symonds et al. (1982) and with laboratory experiments of 
Kostense (1984). Solutions for oblique short-wave incidence including resonant edge 
wave exitation will be given in a later publication. 

2. Mathematical model 
2.1. Infragravity wave motion 

The phenomenon of infragravity waves forced by short waves involves two scales in 
time as well as in space. Typically, the timescale of the short waves is O( 10 s) and of 
the infragravity waves O( 100 5). One way to treat this problem is to separate the two 
scales explicitly as in a WKB-expansion. Here we shall use another approach, which 
is perhaps less stringent, but probably more transparent, physically as well as 
mathematically. Regardless of the approach the same equations result. 

From the 'narrow-minded ' short-wave point of view the infragravity motion is 
merely a slowing varying current and depth. I n  comparison with the large 
lengthscale of the infragravity wave, the water will be shallow, and accordingly the 
current will be uniform over depth. Thus we can use the depth-integrated and time- 
averaged conservation equations of mass and momentum for waves on a slowly 
varying uniform current, where the time-averaging is taken over one short-wave 
period. 

Tensor notation with the usual summation convention for double indices is used 
in this chapter, and the axes of a horizontal Cartesian coordinate system xi, i = 1, 2 
are also referred to as 2 = x, and y = x2. 

2.1.1. Governing equations 
Following Phillips ($3.6, 1977) we have conservation of mass: 

and conservation of momentum : 

(2.2) 

see figure 1 for definitions. Here Qi is the ttotal volume flux defined as the sum of the 
(mean) volume flux Q,,d of the short waves, and the volume flux of the current 

Qz = Qs, i + Qc, i, 
- 

(2 .3 )  Q C , t  = (h+S)UC,i 

where Ucvi  = Uc, z(xi,  t )  is the uniform current under wave trough level assumed in 
the derivation of (2.1) and (2.2). This current is allowed to have a small variation in 
time as well as in space, and together with 5 it  describes the low-frequency motion 
under investigation. Further S, is the radiation stress, p is density, and q is 
acceleration of gravity. Defining the mean horizontal velocities by 
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SWL - 

FIGURE 1. Definition sketch. Vertical cross-section along xi. 

where Us,i and Uc,i  are given for later use, equations (2.1) and (2.2) can be written as 

and 

ac a 
-+-[(h+QU,] = 0, at ax, 

(2.5). 

which are the nonlinear shallow-water equations with a forcing term. 
Once the forcing term is known from the short waves, the surf beat wave can, in 

principle, be found by solving (2.5) and (2.6) simultaneously, subject to relevant 
boundary (and initial) conditions. However, the forcing term itself depends weakly 
on the solution through the total water depth h + c  and the interaction between the 
short waves and the current corresponding to the surf beat wave. When the 
equations are linearized, this dependency vanishes, since we get 

and 

az a 
at ax, -+-(hUi) = 0,  

In  this formulation the undisturbed depth h is consequently used in the calculation 
of the radiation stress, where also the current interaction is neglected. Eliminating 
Ui from (2.7) and (2.8) we get 

which is the linear shallow-water equation with a forcing term. This linear equation 
was also obtained by Mei & Benmoussa (1984; note that in their equation (2.11) the 
minus sign on the right-hand side is missing) using a WKB-expansion from Chu & 
Mei (1970). In  order to describe the nonlinearity of the infragravity waves as in (2.1) 
and (2.2) or (2.5) and (2.6), this expansion would have to be carried to a higher order. 

For a uniform beach slope Carrier & Greenspan (1958) solved the nonlinear 
shallow-water equations for cross-shore free, long waves and found that, although 
the solution for the surface elevation close to the shoreline was very different from 
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the linear solution, the run-up height was the same as predicted from the linearized 
equations. This gives a little comfort when dealing with the linear theory. 

A well-known solution to (2.9) is the bound, long wave described by Longuet- 
Higgins & Stewart (1962, 1964) for constant depth. 

2,1.2. Boundayy conditions 
At the coastline we shall assume full reflection of infragravity waves. In the limit 

of h+O (i.e. at the coastline) this condition gives a standing wave, but because of the 
forcing that takes place we cannot expect a pure standing wave away from the 
coastline. The solution to (2.9) can be expressed as 

(2.10) 

where z(l) and 3(2) are the two linearly independent homogeneous solutions, and z, is 
a particular solution, which is conveniently chosen so that it vanishes at  the 
coastline. In  a complex representation, where F1) and {(') are free, long waves 
travelling in opposite directions, the condition that 5 must be non-singular at  the 
shoreline boundary gives 

provided that IP(')I = I{("[ . 
The verbal formulation of the seaward boundary condition is dependent on the 

behaviour of the solution far offshore. If the solution here is oscillatory, we specify 
that there are no incident free, long waves, and if it is exponential, we require the 
solution to be evanescent, which rules out exponential seaward growth. However, we 
can choose the solution so that these conditions have the same mathematical 
formation. In a complex representation where is a seaward propagating 
(oscillatory) wave we require /3 = 0 (no incoming free, long waves). (Here a and B are 
different from those at  the coastline since they correspond to solutions in different 
regions (see the matching conditions) .) However, if the incoming short-wave 
conditions are changed so that the solution becomes exponential, then 
Z(l) becomes real and evanescent and fi = 0 is still the right condition. 

2.1 3. Matching conditions 
It appears later that we shall have to match the solutions along the common 

boundary of two regions, for example, inside and outside the break point. Only one- 
dimensional topography will be considered and matching will only be relevant at 
lines parallel with the shoreline x = z,, where the subscript m refers to the matching. 
Since (2.9) is a second-order differential equation, two matching conditions are 
needed. One is obtained by requiring the surface elevation to be continuous 

a = p, (2.11) 

[S]' = 0, (2.12) 

which can be shown to be consistent with continuity in mass and energy flux. Here 
the limits + and - are to be interpreted as x+x, from the right and left, 
respectively. The other condition arises from integrating (2.9) from x& to z&, which 
vields 

(2.13) 

This condition renders a kink in y possible. However strange this may seem, it is 
merely a generalization of the usual kink at  the break point in the classical 
calculation of stationary wave set-down/set-up. 
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FIGURE 2. Sketch of incident waves. With the choice of coordinate system the wave shown travels 
in the negative directions. However, with the artifice of choosing k = ( - k,, - k,) we get positive 
wavenumber components. 

2.2. Transformation of wave groups in shoaling waters and in surf conditions 

In  order to compute the forcing term in the governing equation (2.9) the radiation 
stress tensor X i j  associated with the short waves is needed. To the lowest order of 
approximation this can be obtained from linear Stokes theory with appropriate 
modifications in the surf zone. We have (see e.g. Mei 1983, chapter 3, equation 6.42) 

where S,, is the Kronecker delta and 

cos2a +sin201 
isin2u sin2a 

(2.14) 

(2.15) 

a being the local angle of incidence, see figure 2. Here A is a complex amplitude 
describing the modulation of the short waves, and cg and c are the group velocity and 
phase velocity of the short waves, respectively. A is allowed to have a slow variation 
in time as well as in space, and it is determined by the kinematics and the dynamics 
of the short waves. 

The accuracy of (2.14) is known to decrease towards the break point and in the su r f  
zone it only gives a crude approximation, generally an overestimation, see Svendsen 
(1984). 

2.2.1. The kinematics 

monochromatic wave trains of slightly different angular frequencies 
The most simple case of a modulated wave train is that of a superposition of two 

w(l) = w , ( l + e ) ,  w(Z) = w,( l -e ) ,  (2.16) 

where w, is their mean value, and 6 is a small perturbation parameter. Alternatively, 
one could have specified a wavenumber perturbation as was done by Mei & 
Benmoussa (1985)) Schaffer & Svendsen (1988) and Liu (1989), but this approach has 
the disadvantage that the perturbation parameter then has to refer to some fixed 
depth. Note that the two approaches result in different definitions of e. 

The change ew, in angular frequency corresponds to  a change Ah! in wavenumber 

Ak 
Ak = -ew, z -, 

A W  c g  

(2.17) 
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so that 

(2.18) 

We shall assume that the two waves have the same angle of incidence a. a t  some 
offshore (horizontal bottom) position. Consequently they will undergo much the 
same refraction, and we can everywhere use k ,  a as a mean wavenumber and 
direction for the short waves. 

It will later prove convenient to choose the shore-normal axis positive offshore, see 
figure 2. The usual consequence of this would be to obtain one (or two) negative wave 
number component(s) of the wavenumber vector. However, with the artifice of 
choosing k = ( - kx ,  - k,) we conveniently get positive wavenumber components, 
which we shall also denote k,, i = 1, 2. 

Let * denote the complex conjugate of the preceding term, then the elevations of 
the two wave trains are 

(2.19) 

Further, k ,  is constant on a one-dimensional topography h = h(x) (Snell’s law), and 
the superposition is 

q2 = p )  + +2) 

(2.20) 

To the leading order in E (i.e. O ( 8 )  = O(1)) we have 

For the difference wavenumbers the leading order is O(e) .  Let the subscript 0 refer 
to the location where the two wavetrains have a common angle of incidence ao, then 
we get 

(2.22) 

see Schaffer (1990) for details. Equation (2.22) compares with (3.9) of Mei & 
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Benmoussa (1984), and (2.23) is also consistent with their findings. The connection 
between the present 6 and their definition (here with the subscript MB) is 

6 -  co - - EMB. 

Also, Kx is defined differently: ego 

xz = 2EiWB Kx, MB' 

(2.24) 

(2.25) 

While (2.22) was found directly from the expressions for the two wave trains, Mei & 
Benmoussa derived their (3.9) from (2.29), see below. 

Using (2.21)-(2.23) in (2.20) now yields 

(2.26) 

where A = a(i)eie + a(z)e-is (2.27) 

e = - ~ x d x : + ~ ~ v y + E W , t .  (2.28) and 

TO the lowest order of approximation the kinematics presented here apply 
everywhere. This is not true for the dynamics, where the surf zone has to be treated 
separately. 

2.2.2. The dynamics 

wave steepness (see e.g. Phillips 1977, §3.6), 

s 

Outside the surf zone energy conservation prescribes to the leading order in short- 

(2.29) 

where the minus sign on the second term is a consequence of chosing cg = ( -cgx, 
-cgy) (analogous to k = (-&, -,$,)) to get positive components of the group 
velocity vector, see figure 2. Owing to the linear description of the primary waves the 
two wave trains are described by the usual law for shoaling and refraction, 

(2.30) 

where a can be either a(l) or (since according to (2.21) the two wave trains are 
refracted identically to the lowest order in E ) ,  and the subscript ref refers to some 
reference depth. 

We now turn to the modelling of the short-wave amplitude within the surf zone. 
It is evident that the position of the break point must vary slowly in time owing to 
the grouping of the incident waves. Let the amplitudes of the two incident wave 

a(l)  a ,  a(z) 6a (2.31) 
trains be given by 

then 6 is a modulation parameter for the short waves. For 6 = 0 there is no 
modulation, and for 6 = 1 we have 'genuine ' wave groups with nodes in the envelope. 
In  the following we shall assume S 1 so that only small modulations are treated. 
This further implies that  the variation of the break-point position is small, although 
not negligible. 

The model we shall use for the breaking and shoreward decay of modulated 
incident waves is a combination of two simple, but basically different, models. We 
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shall begin with a presentation of each of the two and then show how an interpolation 
between them yields a more general description. 

The first model is obtained by assuming that the short-wave modulation is totally 
destroyed by the breaking, so that the wave height decay in the surf zone is solely 
dependent on the local water depth. We shall use the crude approximation of 
proportionality between the amplitude and the local water depth, which may be 
written 

[ A  12 = y; h2, (2.32) 

where yo is a constant often taken as 0.4. Outside the break point we have 

J A  1 2  = a2(1+62+26cos28) 

= a2[(1+26c0s2/3)+0(6~)]. (2.33) 

The instantaneous break point xb(t) is now found as the position where these two 
amplitudes match. Equating (2.32) with (2.33) yields 

xb(t) = (1 + a2 + 26 cos 26,); 
Yohx 

where w 2&) = (J1) - &), (2.35) 

and h, is the bottom slope for a linear depth h = h,x. (More generally we can take h, 
as the local bottom slope, by which the expressions hold also for non-planar beach 
profiles provided they are monotonic.) The quantity r j  is a phase given by 

4 = K,dx 
const. 

= Kxdx+O(S), (2.36) 
J const. 

and it has a weak time dependence of O(S), which may be neglected in (2.34), 

2m/w so that X,, is the mean position of the break point, and the subscript b refers to 
the break point. Solving (2.34) for x,,, we get 

introducing only errors of 0 ( S 2 ) .  The overbar denotes time-mean over a group period / 

- 
x&) = * [I +pa cos (q5 + K ,  y + wt) + O ( P ) ] ,  (2.37) 

Yohx 

where 

and 

1 
p z -  

i + v '  
(2.38) 

(2.39) 

Note that ,u is a factor which accounts for the short-wave shoaling and refraction 
within the region of initial breaking. For normal incidence we have 

(2.40) 
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waves 

FIGURE 3. Sketch of bottom topography and two examples of short-wave modelling with 
associated definitions of the regions I, 11, B, and 111. 

so that 0 6 v < and thus $ < ,u 5 1.  According to (2.40) v can in principle be 
negative, but since this corresponds to breaking a t  intermediate water depth it will 
not happen in practice. The deviation of ,u from unity was neglected by Schaffer, 
Jonsson & Svendsen (1990) and Symonds et al. (1982). 

Equation (2.37) shows that the variation of x,, is essentially harmonic in time with 
maximum excursions p&Z, away from the mean position, neglecting terms of O(6)'. 

This model was used by Symonds et al. (1982) to study the effect of a time-varying 
break-point position, and it is illustrated in figure 3, case K = 1 (for the definition of 
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K ,  see later). The figure also defines region B as the zone in which initial breaking 
occurs. 

The second model is more simple in that it postulates a fixed break-point position 
so that x,, is not a function oft. On the other hand, this implies the complication that 
the short-wave modulation is transmitted into the surf zone. Fixing the break point 
according to (2.32) without modulation (6 = 0) 

ab = YO hb, (2.41) 

the surf zone amplitude is taken to be 

IAI2 = y2h2, (2.42) 

where y is chosen so that the amplitude is continuous a t  the fixed break point, 
implying that y is slowly varying with x and t .  Equating (2.42) with (2.33) a t  
x = x,, yields 

7; = yi(  1 + 6’ 4- 26 cos 28,), (2.43) 

and we choose to define y accordingly also inside the break point to get 

(A(  = yt( 1 +a2 4- 26cos20)h2. (2.44) 

Thus the amplitude modulation is fully transmitted into the surf zone. This model 
was used by Schaffer & Svendsen (1988) when studying transformation of incoming 
bound, long waves, and it is illustrated in figure 3, case K = 0. 

A hybrid model is now obtained by specifying (see (2.32) and (2.44)) 

IA( = yi[l+ (1  - K )  26cos 20+ O(6”)l h2, (2.45) 

where K is a parameter at  our disposal. Equating this with (2.33) a t  the break point 
we obtain 

X,,(t) = ab [I + , U K 8 C O S  (4 +Ku y + OJt) + 0(6’)]. 
- 

(2.46) 
YOh, 

For K = 0 the model simplifies to a constant break-point position and a full 
transmission of grouping into the surf zone. For K = 1, the break point oscillates so 
much that all grouping is destroyed, and the short-wave amplitude is solely a 
function of the local water depth in the surf zone. 

When K lies in the range 0 < K < 1,  the hybrid model represents an interpolation 
between these two special cases. The question now is which value should be assigned 
to K .  Mathematically, we can extrapolate to K-values out of this range, but is this 
physically relevant ’1 Clearly K > 0, since high waves must break a t  greater depths 
than low waves. However, the possibility exists that the higher waves might even 
break so early that they decay sufficiently to appear as the low waves in the surf 
zone - whatever grouping was left would be reversed. This would correspond to 

In  the absence of experimental results on the break-point variation for incident 
wave groups we turn to the bulk of data for monochromatic waves collected by Goda 
(1970). For long group periods ( E  < 1) the breaking will have time to adjust to the 
local incident wave height, and the measurements for monochromatic waves should 
suffice. 

Figure 4 shows yo  as a function of the short-wave steepness in deep water 

K >  1. 
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FIGURE 4. Index yo = a,/h, versus deep-water steepness 6, for different bottom slopes h, = tan /I. 
Experimental results for monochromatic waves adapted from -, Goda (1970) and from ~ - - ,  
Hansen (1990). 

6, = (o,2/g)a, for different bottom slopes. The full curves were obtained from 
Goda’s figures and the dashed curves are given by 

(2.47) 

= 0,72hk2d-,0.”9, 

obtained from Hansen’s (1 990) empirical expressions. 

deviation A ( y 2 )  of y 2  is seen to be 
Now the connection between yo(&,) and K is found from (2.45). The maximum 

(2.48) A(y2) = yg( 1 - K )  28, 

neglecting terms of order O(S2).  The relative change in y 2  is A ( y 2 ) / y i  = 2A(lny) and 
the relative change in incident short-wave steepness is S = A(ln 4,). Hence, solving 
(2.48) for k yields in the limit of infinitesimal variations 

(2.49) 

where we have replaced y with yo in accordance with our use of measurements for 
unmodulated incident waves. Thus the deviation of k from unity can be found as 
minus a gradient of the relevant curve in figure 4 measured along the logarithmic 
axes. These gradients are zero or negative everywhere indicating that we always have 
K 2 I. Hansen’s data render K a universal constant 

K = 1.09. (2.50) 

As mentioned before, K > 1 represents a reversal of grouping as the short waves pass 
through the zone of initial breaking. However, as long as K is close to unity, there is 
also a substantial reduction in the modulation. For example, K = 1.1 only lets 10% 
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of the original modulation through to the surf zone. The analysis of field data by List 
(1991) indicates that some wave grouping persists within the surf zone on a natural 
beach. 

3. The energy balance 
Before we proceed with the solution of the model described in $2 we shall briefly 

consider the energy balance in order to gain some physical understanding of the 
model. A detailed analysis is given in Schaffer (1990). 

In  the linearized form of the governing equations we have lost the description of 
the interaction between the incident short waves and the resulting infragravity 
waves. This is analogous to any other lowest-order perturbation. Here the 
infragravity waves represent the perturbation of the short-wave climate. The long 
waves are forced by the short waves which generously feed them with energy without 
losing any of their own. This is because the short-wave description is independent of 
the long waves, and our linearized model leaves no room for a feed-back mechanism. 
This again means that the model breaks down long before the infragravity wave 
reaches an amplitude comparable to that of the short waves. 

In  the previous chapter we have used the conservation equations for mass and 
momentum in which the water motion had already been divided up into a 
contribution from the infragravity wave (or slowly varying current) and a 
contribution from the short waves. In order to analyse the energy balance we 
initially regard the total water motion including both of these. 

Equation (3.6.18) of Phillips (1977) states the conservation of total energy can be 
written as 

as aw. -+;+s, = 0 
at ax,L 

where we have included the dissipation per unit area, 6,. Here d is the total energy 
density and W-, is the total energy flux in the xi-direction (i = 1, 2). Dividing the 
horizontal velocity components into a short-wave component and a (slowly varying) 
current or long-wave velocity yields 

8 = E,+E,-%(h+<) q, (3.2) 

(3.3) % = wc, i + ws, i + u c ,  i Es -ip(h + Y) ui + uc, j Sij. 
Here E is an energy density, and W is an energy flux, and the subscripts c and s refer 
to the current (or long waves) and the short waves, respectively. Furthermore, U and 
rJs are the lengths of the horizontal velocity vectors with the components Ui and Us, i, 
respectively, given by (2.4). Note that E ,  and W,,$ are defined using U, rather than 
l J c q  i 1 

E’, = ip(h+Z) v++pgp, (3.4) 
Wc,i = U,(h+5)($U2++g5). (3.5) 

This is a convenient choice, since it is Ui that appears in the conservation equations 
for mass and momentum. (The opposite choice would change the interpretation of 
(3.2) and (3.3) as to how large the contributions to the total quantities (a, W.) were, 
owing to the current (E,, W,,,) and the interaction terms, respectively.) 

Equation (3.1) can be split up into two new equations, one for the short waves and 
one for the total current, Ui (the current excluding the return flow due to the mass 
transport of the short waves). Subtracting p(h + y) Ui times the momentum equation 
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(2.6) and (pg {+ ipV)  times the equation of mass conservation (2.5)t from the total 
energy equation (3.1) we obtain the energy equation for the short waves 

as,, 
+sijQ-Us,r-+E, ax, axi = 0, (3.6) 

where Ed is the short-wave dissipation. The last term but one is missing in equation 
(3.6.19) of Phillips (1977) where it should have been included. Usually this term iu 
small (i.e. for IUJ lUsl), but when U, and Us are of the same order of 
magnitude, the term is comparable to the preceding one. This is, for example, the 
case if rJp corresponds to a long, forced wave a t  depths that are large relative to the 
short waves. 

Subtracting the short-wave energy equation from the total energy equation yields 
the energy equation for the total current. Equivalently this equation can be obtained 
by adding p(h+{ )  lJ, times the momentum equation (2.6) to (pgC+ipV)  times the 
equation of mass conservation (2.5). We get 

(3.7) 

This equation is equivalent to (3.6.22) of Phillips (1977) except for the last term, 
where he has [Jc , i  instead of Ui. Note that (3.7) becomes an identity for zero total 
current Ui E 0, whereas Phillips (3.6.22) becomes unbalanced. The last term is (3.7) 
is the work done on the long waves by the short waves. 

In the applications in $4 we shall compute the time mean over a group period of 
the energy flux for the long waves. A spatial variation of this quantity illustrates how 
the long waves can change from having the character of a standing wave at the 
coastline to being of progressive nature further offshore. Thus, the mean long-wave 
energy flux will be helpful when interpreting the numerical results for the infragravity 
wave surface elevation. 

4. Two-dimensional infragravity wave motion - normally incident wave 
groups 

We now turn to the case of normally incident groups of short waves. Assuming a 
one-dimensional topography h = h(x) the radiation stress has no variation in the 
longshore direction, and hence the short-wave forcing will result in two-dimensional 
infragravity waves. Of course three-dimensional free waves can still exist, but they 
cannot originate from the forcing mechanisms considered in the present work. We 
shall only consider a plane sloping beach connected with an offshore shelf, see 
figure 3. 

4.1. Governing equations 
In  the one-dimensional case the long-wave equation (2.9) reduces to 

t The combinations p(h+<) U, x (2 .26 )+  (pg<++pV) x (2 .5 )  can be substituted by pUi x (2.2) 
+ (pyf ; -&V)  x (2.5) as used by Phillips (1977). 
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where from (2.14) 
-sxx 1 =#A,'{+}. 

PS 

Neglecting terms of O(6') we have from (2.45) and (2.33) 

y;h2[1+(l-K)2Scos28] (x < Xb(t)), 

1 +28cos20) (. 2 %At)), 
14' = { a  ( 

where from (2.46) the position of initial wave breaking is 
- 

X b ( t )  = %(I  +pK8COSWt), 
Yohx 
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(4.2) 

(4.3) 

(4.4) 

choosing 9 = 0. Consistent with this choice we have from (2.22), (2.28), (2.35) and 
(2.36) 

and from (2.30) a2 = h a :  (x > xb(t)) ,  

choosing deep water as reference. 

cg 

(4.5) 

4.2. Theoretical infragravity wave solution 
4.2.1. General solution 

Restricting ourselves to study only infragravity wave phenomena that are periodic 
in time we introduce the Fourier expansions of the elevation of mean water surface 
y and the radiation stress S,, 

00 - 

6 = C #,(x) einwt + *), 

S, = C i$(Sn(x) eind + *), 
n=o 

W 

n = o  

where *, as before, denotes the complex conjugate of the preceding term. Now (4.1) 
transforms into the ordinary differential equations 

1 d2Sn 
= ( n = 0 , 1 , 2  ,... ). 

p dx2 
(4.9) 

The case n = 0, for which (4.9) can be integrated directly, determines the stationary 
set-down or set-up, and it will not be pursued further. The rest of (4.9) governs the 
infragravity wave motion which we shall concentrate on in the following. 

By the method of variation of parameters, the solution to (4.9) may be expressed 
as 

(4.10) 
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where (2) and (2) are linearly independent homogeneous solutions (free waves), W ,  
is their Wronskian, q, is the right-hand side of the normalized equation (4.9) 

( n = 1 , 2 , 3  ,... ), 1 d2Sn 
q n  = - 3 ~  (4.1 1)  

and 01, and ,8, are arbitrary complex constants. Any lower limit of integration xl in 
(4.10) can be chosen. 

So far all derivations are valid for an arbitrary one-dimensional depth variation 
h = h(x) with the restrictions that it should be ‘sufficiently’ smooth and have a 
monotonic variation within and near the surf zone. Also the depth must everywhere 
be small compared with the lengthscale of the infragravity waves. In the following, 
we shall confine ourselves to a plane sloping beach h = h,x connected to a shelf 
h = h, at some distance seawards of the break point. Figure 3 shows a cross-section 
with definitions of four regions I, 11, B, and 111. Region I is the surf zone taken as 
0 < x d Xb(t) ,  where Xb(t)  is the variable position of the break point, region 11 is the 
shoaling zone xb(t)  < x < xo = ho/h,, and region I11 is the shelf zone x 2 xu - a 
constant depth zone inferred to enable us to specify a seaward boundary condition 
for the solutions in regions I and 11. Region 111 also serves the purpose of limiting the 
water depth to keep it small for the infragravity wave motion (although it may well 
be deep water for the short waves). Region B is the zone of initial breaking given by 
xa < x d x,, see figure 3, case K = 1. Thus region B overlaps regions 1 and 11. 

In regions I and I1 we have h = hxx ,  and choosing a complex representation the 
free wave solutions (homogeneous solutions) to (4.9) are given by the Hankel 
functions of the first and second kind of order zero (n = 1, 2, 3, ...) 

6:) = HF)(ny‘) = Jo(ny‘) + 
(4 .12)  (p) = Hp)(ny’) = J,(ny’)-iY,(ny’), 

where J, and Yo are zeroth order Bessel functions of first and second kind, and 

(4.13) 

Their Wronskian (see e.g. 9.1.17, Abramowitz & Stegun 1972) with respect to x is 

and we get 
4n=--- in: d2Sn 
W ,  2pghx dx2 ’ 

after which (4.10) yields 

(4.14) 

(4.15) 

redefining the constants. 
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On the shelf the solution to (4.9) is easily verified to be 
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(4.17) 

( n = 2 , 3 , 4  ,... ), 
using (4.20) and (4.21) below. Here the particular solution (last term) is the bound, 
long wave found by Longuet-Higgins & Stewart (1962, 1964). 

The assumption of wave groups made up from only two wave components reduces 
the radiation stress (4.8) to 

(4.18) 

where J refers to the three regions. This is consistent with (4.2), (4.3) and (4.5), and 
we have 

SkJ) = SiJ) +i(SiJ) eiwt + *) ( J  = I, 11, 111), 

(4.19) 

by which S,, in the three regions may be written 

~ p ( 1 + 2 6 ( 1 - ~ ~ ) ~ ~ ~ 2 ~ )  (x G Xb(t)), 

sy)( 1 + 26 cos 28) 

S p (  1 + 26 cos 28) (xb( t )  xO), (4.21) 

(xo < x). 

Note that S,, is continuous at xb(t) (and elsewhere), since this (through continuity in 
lAI2) was the criterion when the variation of xb(t) was found, see the end of 92.2.2. 

Away from region B the Fourier coefficients of S,, are given by (4.19) and (4.20), 
and in each region the solution for the elevation can be found from (4.10). In region 
B, however, (4.19) and (4.20) are not the Fourier coefficients of the radiation stress, 
since they have an implicit time-dependence given through the variable break point 
position. This feature is essential for the impact of a time-varying break point 
position. 

4.2.2. The effect of oscillations of the break point position 

breaking, region B. 
This subsection takes up the rather special circumstances in the zone of initial 

Consistent with the chosen form of the Fourier expansion (4.8) we have 

(4.22) 
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and 
S,e-inwtd(wt) (n = 1 ,2 ,3 ,  ... ). (4.23) 

Again, since the goal is to study the low-frequency motion and not the stationary set- 
down and set-up, So is irrelevant. From (4.4) it is seen that the extent of region B is 
O(6) by which 20 from (4.5) may be approximated by ot within an error of O(S). 
Introducing this in (4.21) the error becomes O(S2), which we accept. This 
approximation makes X,, an even function of time, and we get 

(l SL2 cos (not) d(wt) + NL:) cos (nwt) d(ot) (n  = 1 , 2 , 3 , .  . . ) (4.24) 

where 0 < t 6 710 and 710 < t d 7c are the time intervals of which we have surf 
conditions and shoaling conditions, respectively, for a point in region B. Since these 
intervals vary from point to point then 7 = 7(x). From (4.4) we have 

(4.25) 

Note that both (4.4) and (4.25) are expressions for the curve in the (x,t)-plane on 
which breaking occurs; in (4.4) the point of breaking is given with t as the 
independent variable, while in (4.25) the time of breaking is given with x as the 
independent variable. Differentiation of (4.24) yields 

(4.26) 

since the terms arising from the variable limits of the two integrals cancel each other, 
because S,, is continuous a t  the instantaneous break point. 

Replacing 219 by wt in (4.21) (see the comment above) it follows that neglecting 
O(S2) we get 

d f p  2 -x&jfp 
x=i[o dx 

- [ 1 + 26( 1 - K)  cos wt]  cos (nwt) d(wt) 

(1+26coswt)cos(nwt)d(o t )  ( n =  1 ,2 ,3  ,... ). (4.27) 

Further 

sin (n7) + O(6) (n  = 1 ,2 ,3 ,  ... ), (4.28) 

where 

sin((n-1)7) sin((n+)7) 
2(n- 1) 2(n+ 1) 

+ ( n = 2 , 3 , 4  ,... ), 
(4.29) 
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(4.30) 

Here it is only important to know thatf , (~)  and yn(7) are O(1) in 6, and their explicit 
appearance is given for later use. At the extreme positions of the break point we have 
from (4.25) 

7(x , )  = 7c, 7(xJ = 0, (4.31) 
by which (4.28) gives 

and 

Returning to the expression for the elevation (4.10) we can write a particular solution 
in region B as 

(4.34) 

where we have used the real representation 

.gp = Jo(ny’), gg) = Yo(ny’), (4.35) 

with the corresponding Wronskian (see e.g. Abramowitz & Stegun 1972, equation 
9.1.16) 

(4.36) 

and n = 1,  2, 3 , .  . . is understood. Integration by parts yields 

using the identities 

(4.38) 

Here the contributions from the upper variable endpoints cancel each other. Further 
we can approximate Jo(ny’) by Jo(nyL) (and likewise for Yo(ny’)) introducing only 
errors of 0(6), which multiplied by dSLE)/dz taken a t  x = x, (see (4.32)) become 0 ( S 2 ) ,  

d d 
dz dz - ” J 0 ( 4 1  = - J , ( z ) ,  -[Yo(z)l = -Y,(z). 

19 FLM 241 
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which we accept. Hereby also the contributions from the lower endpoints cancel and 
we are left with 

(4.39) 

Now all variables except 7 are slowly varying in region B, and within errors of O(6)  
(giving errors of O ( P )  on cLB)) they can be approximated by their values a t  the mean 
break-point position. Using (4.28) this results in 

where we have also used (4.36) and (4.38). The integral is evaluated using (4.25) and 
we have 

sin (727) dz = - Xb , U K ~  

(n = 11, 4 

( n = 2 , 3 , 4  ,... ). 1 2 s i n [ ( n - l ) ~ ]  - sin[(n+l)r]  
\-zb’~~iii( 2(n- 1) 2(n+ 1) 

(4.41) 

Together with (4.40) this gives the variation of a particular solution in region B. 
Being uninterested in the details of the solution in this small region, we shall 
concentrate on the overall significance of the above result. For x = x, (4.41) reduces 
to 

(4.42) 1:; & sin (727) dx = {f.’K6 ( n =  11, 
( n = 2 , 3 , 4  ,... ), 

by which the ‘jump’ in the elevation over region B can be written (see (4.40)) 

(4.43) 

[5,]2=0 ( n =  2 3 , 4 , . . . ) , )  

where we have replaced the endpoints of region B with Xb consistent with earlier 
approximations. Now So is formally taken from the two cases in (4.19) as valid for 
a vanishing extent of region B. Note that the right-hand side of (4.43a) is always 
negative ( K  > 0). 

Thus we have arrived at the important result that to the leading order in 6 there 
is no net forcing of higher harmonics in region B, while the forcing of the fundamental 
is O(6). This is also true away from region B, since we have that S,  (which is 
responsible for the forcing of El) is O(6) here, while S,  = 0 for n = 2, 3, 4... . 
Altogether this means that the influence of the overall short-wave forcing is of the 
same order of magnitude as the influence of the time-varying break-point position. 
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Physically, we may explain the importance of the latter as a result of oscillations in 
the starting point of the set-up, affecting the whole surf zone and not only region B. 
Had SLB) only been a weighted mean of St) and St’), it would have been of no 
significance. 

We now turn to the gradient of the surface elevation to investigate whether the 
elevation has a ‘kink’ over region B as well as the jump derived above. Differentiation 
of (4.34) followed by integration by parts yields 

(4.44) 

This expression is analogous to (4.37), only now the integrals cancel within the 
accuracy of O(S),  and the remainder can consistently be approximated by 

Note that here we could not have approximated the arguments of the Bessel 
functions by their values at  any other position in region R as we did above, since 
dSLB)/dx is generally O(1) (except a t  x = x, and x = xc, see (4.28)), by which the total 
error of the right-hand side of (4.45) would have been O(6) and not O(S2). 

Using (4.36) and (4.38) now yields 

(4.46) 

Equivalent to (4.43) we are mainly interested in the kink in the elevation over region 
B. This may be written 

(4.47) 
[%] = O  ( n = 2 , 3 , 4 ,  ...), 

dx - 

where S,  is now formally taken from the two cases in (4.20) as valid for a vanishing 
extent of region B. 

This means that there is a kink in the elevation of the fundamental, but no kink 
in the higher harmonics, which do not exist anyway. Comparing this result with the 
matching conditions, we see that (4.47) satisfies (2.13). However, (4.43) replaces 

Thus the important conclusion of this subsection is that we can incorporate the 
eflect of oscillations of the break-point position in the overall solution for the surface 
elevation by simply ignoring the presence of region B and replacing the continuity 
condition (2.12) by the discontinuity condition (4.43). 

In this way the large change in elevation over region B is concentrated in a 
discontinuity at the mean break-point position, locally losing the details of the 

(2.12). 

19-2 
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solution. However, we have made sure that globally the solution is not affected by 
this simplification. 

4.2.3. Determination of integration constants 
There are two complex constants in three regions to be determined, and we have 

two boundary conditions and four matching conditions providing the necessary six 
complex equations. 

The seaward boundary condition (see 92.1.2) is that of no incoming free, long 
waves, which requires = 0. In  region I we take xl = 0 as the lower limit of 
integration in (4.16), by which the particular part of the solution vanishes at the 
shoreline. Now the finite-amplitude reflection condition (2.13) yields a!’) = /ly), by 
which the solution becomes proportional to J,(y’) in the shoreline limit. 

The matching conditions are given by (2.12), (2.13) and (4.43). 

4.2.4. Horizontal purticle velocity and mean energy flux 
Introducing the Fourier expansion of the linearized horizontal long-wave particle 

velocity m 

U = 2 +( Un(x) ein‘tJt + *), (4.48) 
n=O 

we get from the equation of conservation of momentum (2.8) 

(4.49) 

Here UO = 0 owing to the impermeable shore. Furthermore, U, = 0 for n = 2 , 3 , 4 , .  . . , 
since for these n-values both 5, and 8, vanish so that the horizontal velocity is 
described by U, alone. 

The mean energy flux W of the long-wave motion is found by taking the average 
over a long-wave period, T = 2 x / w  of the linearized version of (3 .5) .  We get 

W = - pghZUdt 

m 

IoT 
pgh 2 einwt + *) )( t(u n einot +*) )d t  =;JOT Lo n=O 

= h h  C (un 6; + u: E n )  

co 

n - 0  

= ipgh Re { u, 5 3  (4.50) 

where *, as before, denotes the complex conjugate of the preceding term when it 
stands alone, while it means the complex conjugate of the actual term when used as 
a superscript. 

4.2.5. Important parameters 
A non-dimensional representation is chosen to  limit the number of dependent 

parameters for the infragravity wave solution. Let A denote non-dimensional 
quantities and let the lengthscale for some quantities be kG1 = (w;/g)-l as suggested 
by the short-wave dispersion relation. This lengthscale will be used when defining the 
non-dimensional versions of the depth h, the off-shore coordinate x, and the 
amplitude a and wavenumber I% of the short waves. 
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As concluded in the preceeding subsection the infragravity wave motion is to the 
leading order in 6 described by El alone and we chose the following non-dimensional 
forms 

(4.51) 

where W ,  is the lowest-order expression for the energy flux of the short waves before 
breaking. 

We could have fhosen t o  eliminate the explicit dependence of dm on tl by the 
redefinition 6, : = &/la. However, there would still remain an implicit dependence 
on the final matched solution. This dependency originates from the determination of 
the match point corresponding to the mean break-point depth, which is still a 
function of d m .  

It turns out that in all results the bottom slope h, only appears as part of the 
parameter h,w,/o.  This parameter is the ratio between two small quantities, one 
being the bottom slope, and the other the ratio of infragravity-wave frequency to 
short-wave frequency w / w ,  = 2~ (see (2.35)). Thus for a fixed (mean) short-wave 
frequency the solution is unchanged if the bottom slope and the difference frequency 
are changed by the same factor. This means that long, short-wave groups over small 
bottom slopes give similar infragravity-wave activity as short, short-wave groups 
over steep bottom slopes. 

As a consequence of the choice of non-dimensional form the solution is determined 
by the five parameters 

(4.52) % f l  5 h o ,  d,, K ,  Yo, 
0 

where h, is the depth in region 111. I n  real life, however, the first three parameters 
in (4.52) together with h, would suffice, and nature would provide the best fit for yo 
and K .  However, we have chosen to keep the five parameters in (4.52) as our set of 
input parameters, only using the empirical information on yo and K as a guideline to 
their relevant magnitudes. 

In order to get some quantitative measure of the magnitude of the free wave 
propagating seawards in region I11 relative to the incoming bound, long wave, we 
define a ‘reflection coefficient’ R as the ratio between their respective amplitudes 

(4.53) 

see (4.17). If Lo corresponds to deep water for the short waves (but still shallow water 
for t,he long waves) then the amplitude of the bound, long wave willAbe proportional 
to (h,-$’, whereas the free, long wave will be proportional to  hi: according to 
Green’s law. Thus the influence of depth is much weaker on the free, long wave than 
on the bound, long wave. We have 

(4.54) 

so that R is large for large A, - in fact R + 00 as Lo+ 00. (i = 3 corresponds to 
h,/L, z 0.5.) 
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- 

h, 4 / g  h d / g  
FIGURE 5. Dimensignless infragravity wnave: -, envelope f 1&1 and elevation?---, Re&} at 
t=O,and-.~,Im{~~}att=-~Tversushfortheinputparametersh,w,/o=0.25,h, = 3,8, =0.1, 
K = 1 ,  and yo = 0.4. 

4.3. Sample results for the infragravity wave 

4.3.1. Surface elevation 
The solution for the non-dimensional surface elevation amplitude, fll/(Sa,), was 

integrated numerically, and the integration constants were found by numerical 
solution of the six linear equations. 

Figure 5 shows an example of the solution for the input parameters h, w,/w = 0.25, 
ha = 3, 6, = 0.1, K = 1 ,  and yo = 0.4. The figure shows the envelope of the 
infragravity wayes (not to be confuse4 with the eqvelope of the short waves), which 
is given by f 16, I . Furthermore, Re {&} and Im {&} are shown. These correspond to 
the surface elevation at  times t = 0 and t = -aT, respectively, where T = 2n/w is the 
infragravity wave period, which is identical with the group period of the short waves. 

The solution shows a gradual change from a standing wave a t  the coastline to a 
seaward progressing wave in deep water (for the short waves). This trend will be 
investigated quantitatively below by computing the infragravity-wave energy flux. 
The progressive nature of the solution a t  large depths indicates that the outgoing free 
wave has a much larger amplitude than the incoming, bound, long wave, which is 
confirmed by a computed value of R = 10.6. 

Thq depth a t  the mean break-point position, which for the chosen values of 6, aqd 
yo is Kb = 0.264, is marged with a vertical line in the figure. Here a jump in Re{&} 
appears, whereas Im(fl> is continuous. This is consistent with (4.43), and it is a 
consequence of our choice oft = 0 as the time when the highest wayes (in the short- 
wave group) break. Furthermore, there is a kinknin the elevation a t  h4= E,, consistent 
with (4.47). This kink appears mainly in Re{g,}, but also in Im{[,}, as it should 
according to (4.47) considering (4.20). 

For K = 1 the break point oscillates just so much that there is no time-varying 
forcing in the surf zone (see (4.20)), and we get a free-wave solution there. Because 
qf the reflective boundary condition a t  the shoreline this solution becomes 

K Jo(y'), and tee Bessel function may be recognized in the figures, its first zero being 
at y' = 2.048 or h = 1.45(h,ws/w)2, which for h,w,/w = 0.25 gives h = 0.09. 

The dimensional amplitude at the shoreline is approximately twice the deep-water 
short-wave modulation Sa,. 
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Changing the depth af the shelf from the deep water value of h = 3.0 to 
intermediate water deptG h = 1 .O for the short waves, leaves the solution on the slope 
almost unchanged, and h = 1.0 is used subsequently. 

The solution appears very different for different values of h Z w s / w ,  since this 
parameter determines the magnitude of the arguments for the Bessel functions. 
Small values of h, w,/w will give a large number of oscillations in the infragravity 
wave envelope and vice ve;sa. This is demonstrated in figure 6 of which all 
parameters but h, ws/w (and h,) are in common with figure 5 ,  while h, w,/w takes the 
values 0.1 and 0.5. Note the different scales on the ordinate. The figures show an 
increase in the infragravity-wave activity for decreasing values of h, w,/o. This also 
appears in the computed reflection coefficients R = 5.0 an$ RA= 1.4, respectively. 
Again, we stress that the dramatic jump in the solutions at  h = hb merely represents 
large gradients in the elevation over region B (the zone of initial breaking, see figure 
3). This jump espeoially appears for h, w,/w = 0.5 for which the first zero of J,(y') lies 
close to the mean break-point position. 
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As a typical dimensional example let the short-wave period be 27c/ws = 8s, the 
group period T = ZA/W = 1OOs, the bottom slope h, = 0.02, the modulation 
parameter 6 = 0.1 (0.2), the mean deep-water short-wave amplitude a, = 1.6m, 
and the shelf be in deep water for the short waves, then the model gives a shoreline 
infragravity wave amplitude of 0.3m (0.6m). This is for ( K ,  yo)  = (1, 0.4) and it 
corresponds to figure 5 .  

4.3.2. Local solution for the bound, long wave 
In  order to compare the results with a local solution & for the bound, long wave 

consider the last term in (4.17) replacing (h,,, cgo, Xir11)) by their local values. This 
solution corresponds to a geometrical optics solution and it can only be expected to  be 
a good approximation if the bottom slope almost vanishes. Even then it fails, in the 
sense that its reflection from the coastline is not incorporated. For reference I &/&a,) I 
is shown in figure 7 for d ,  = 0.1, yo = 0.4, and K = 0 corresponding to a constant 
break-point position and a full transmission of grouping into the surf zone. Note that 
outside the surf zone 1&1 (&am) divided by a, is independent of am. The short-wave 
breaking is seen to limit the otherwise singular solution. 

Inside the surf zone IEJ /(&a,) appears to be almost constant. In  fact, here shallow- 
water theory for the short waves yields 

(4.55) 

which for the parameters of figure 7 equals 2.4 consistent with the figure. Here a 
Taylor expansion was used correct to O(kh) yielding (c,/c,)~ = kph( 1 - ( k l ~ ) ~ )  by 
which the dimensionless denominator in theAlocal solution becomes h- ( c ~ / c , ) ~  = h2, 
applying the shallow water result, = h. 

We now want to compare the local solution with the full solution. However these 
are not directly comparable, since in the full solution reflection yields a partially 
standing wave, while the local solution is a purely progressive wave. In  order to 
overcome this difference we compute a new full solution, now with the artifice of 
substituting the reflection condition at  the coastline with a condition that no free 
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h, o, /w = 0.1, and ( b )  h, w,/w = 0.01. 

waves progress seaward in region 111. This means that there is no total reflection from 
the coastline and matching points X b  and xo. Figure 8 shows this 'no-reflection' 
solution for h,w,/o = 0.1 and 0.01, respectively, the other parameters being fi, = 1,  

= 0.1, K = 0, and yo = 0.4. Comparing figure 8 (a )  with the local solution in figure 
7 we see that just outside the break point the no-reflection solution yields a much 
smaller amplitude than the local solution; a t  the break point approximately 1.1  
versus 2.4. Qualitatively this can be explained as the result of lack of time (or 
distance) for the full (no-reflection) solution to build up to the size of the local 
solution (which has 'local equilibrium '). Inside the surf zone figures 8(a)  and 7 cannot 
be compared, since we have applied matching conditions to the no-reflection solution 
which are unknown to the local solution. 

Changing the bottom slope or the group length in letting h, w,/o be 0.01 as shown 
in figure 8 ( b )  we come much closer to the local solution, since there is now more time 
(and distance) to build up t o  the size of the local solution ; now we get an amplitude 
of 2.2 versus 2.4 for the local solution measured a t  the break point. 
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FIGURE 9. Mean infragravity-wave energy flux W versus R for i,he input parameters h, w,/w = 0.25, 
h, = 3, 6 ,  = 0.1, I( = 1, and yo = 0.4. (a) Ordinary solution (see figure 5), and ( b )  no-reflection 
solution. 

4.3.3. Mean energy Jlux and horizontal particle velocity 

As mentioned earlier, the mean energy flux W (4.50) of the infragravity wave is a 
quantitative measure of the degree to which the solution is a standing wave or a 
progressive wave. Where the energy flux is zero we have a pure standing wave 
solution whereas a positive (negative) value corresponds to a seaward (shoreward) 
progression. 

Figure 9 ( a )  shows W = W/(SzWs) for the solution shown in figure 5. Within the surf 
zone W E 0 as it should be, since there is no time-varying forcing for K = 1 .  Then 
there is a jump to a negative value just outside the mean break point position. This 
illustrates the forcing within region B. Not far seaward of the surf zone the outgoing 
free, long wave dominates the solution and the energy flux becomes positive. 

For comparison figure 9 ( b )  shows Wfor the no-reflection solution introduced above 
for the same input parameters. The absence of reflection gives a monotonically 
decreasing energy flux (of which the absolute value is increasing) as the incoming 
forced wave approaches the surf zone. 
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The energy flux of the local solution (see figure 7) is shown in figure 10. As 
expected, this solution represents an energy flux close to the break point which is 
much greater than that which we have computed for our full solution. This is partly 
because the local solution does not include a wave reflected from the coastline, partly 
because the sloping bed does not allow the full solution to build up to the size of the 
local solution, as commented on earlier. 

Figure 11 shows the non-dimensional horizontal particle yelocity I olI = lull / 
(6u, us) for the infragravity wave shown in figure 5 (except for h, = 1 instead of 3). 
Shorewards of the zero (where the surface elevation has an antinode) the velocity is 
seen to increase rapidly consistent with Wright et al. (1982), who observed large near- 
shore velocities at infragravity frequencies in the field. 

Figure 11 supports the idea that infragravity waves are very important for the 
formation of nearshore bars. 
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and -.-, amplitude of the outgoing, free, long wave I &/(6a,) vpsus (a)  K for 6, = 0.1, and (b) 8, 
for K = 1.0. The other input parameters were ~ , w , / w  = 0.25, ho = 1, and yo = 0.4. Furthermore, 
x = 4.22 in (a )  and * * * ,  x is shown in (b) .  

4.3.4. The injuence of varying input parameters 
The following quantities are chosen to represent the infragravity-wave activity ; 

the reflection coefficient R,  the infragravity-wave amplitude a t  the shoreline 
]El(0)l/(8am), and the amplitude of the seaward progressing free wave in the 
shelf zone (region 111) 1&1 /(&a,). 

Figure 12(a) shows R, I&(O)l /(Sas), and 1Ef1 /(&a,) versus K ,  the rest of the input 
parameters being h,w,/w = 0.25, h, = 1, 6, = 0.1, and yo = 0.4. Note that here 
R cc /(6a,), since h, and 6, are fixed. xis  defined below. Referring to the discussion 
closing $ 2 . 2 2 ,  K is probably not far from unity and the range 0 < K < 2 used in figure 
12 (a) is not physically realistic. However, the figure still illustrates the significance 
of K .  As mentioned earlier we have made the choice that  at t = 0 the incident short- 
wave groups have a maximum at the mean break-point position, carrying with them 
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a depression of the mean water surface. For any (positive) K-value the jump 
condition (4.43~~) counteracts this depression. Physically the explanation is that 
groups of high, short waves carry with them a set-down, which is opposed by the 
larger set-up that they also tend to produce. 

The value of K = 1 represents a qualitative turning point. For K > 1 the forcing is 
reversed inside the surf zone favouring the set-up effect, whereas for K < 1 the set- 
down effect is reinforced. 

Altogether this means that we may expect the infragravity-wave activity (for 
example measured by one of the quantities R,  I[,(0))l/(6am) or I&:fl/(6a,)) to have 
a minimum for some K-value of the order of one, since for K = 0 (fixed break-point 
position) nothing opposes the dynamic set-down, whereas for a large K the dynamic 
set-up is predominant. This is confirmed by figure 12(a). 
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Figure 12(b) shows R, IE,(O)( /(&a,), and l&;fl/(6a,) versus 8, for h,w,/w = 0.25, 
Lo = 1, K = 1.0, and yo = 0.4. For reference the figure also shows the parameter x, see 
below. Note that the modelling of the short waves in the surf zone more or less 
assumes spilling breakers. This requires dm 2 0.05 even for very small slopes. 

The non-dimensional shoreline amplitude is almost independent of the short-wave 
steepness and the non-dimensional seaward progressing free wave is even decreasing 
for increasing 6,. This means that the physical infragravity wave activity has a 
roughly linear (or weaker) dependence on the short-wave amplitude. This is in line 
with the early observations by Munk (1949) and Tucker (1950) and the more recent 
observations by Guza & Thornton (1982, 1985). Thus the model does not show the 
quadratic dependency on the short-wave amplitude which has been a problem with 
earlier qualitative explanations for infragravity waves relying solely on the local 
solution for the bound, long wave. 

Figure 13(a) shows R, 1~,(0)1/la,), and I&:fl/(6a,) (and x) versus h,w,/w fork,, = 1, 
a, = 0.1, K = 1,  and yo = 0.4. The trend of a reflection coefficient increasing rapidly 
with decreasing h, w,/w is seen to be distorted by large oscillations. These oscillations 
are due to the phase difference between two essentially free, long waves, both of 
which are generated in the region of initial breaking, one being subject to direct 
seaward emission and the other being emitted after reflection from the shoreline. 
Figure 13(b) represents the same data as figure 13(a) only now as function of 

(4.56) 

introduced by Symonds et al. (1982) as a measure of the relative phase just 
mentioned. 

Solutions for a wider range of parameters are shown in Schaffer (1990). 

4.4. Comparison with the theoretical results of flymonds et  al. (1982) 
As mentioned in the introduction, Symonds et al. (1982) were the first to develop a 
model for infragravity waves forced by oscillations in the break-point position. In 
this pioneering work, however, they neglected all forcing effects outside the zone of 
initial breaking, region B (see figure 3), and thus the incident bound, long wave was 
not a part of their solution. Furthermore, they assumed that all the short-wave 
grouping was destroyed in producing the time-varying break-point position. This 
corresponds to the value K 3 1 (the parameter introduced in fjF.2.2) which is not far 
from our estimate of K - 1.1, though. Reformulating the jump conditions (4.43) 
according to these assumptions we obtain 

where also shallow-water theory was applied. These questions give the jump over 
region B in the non-dimensional form of Symonds et al. Furthermore, the kink 
conditions (4.47) vanish under the given assumptions. Thus to the leading order in 
6 their solution is found solely by matching free long-wave solutions (a standing wave 
in the surf zone represented by a Bessel function and a seawards propagating wave 
outside the surf zone represented by a Hankel function) requiring a jump - 6 a t  the 
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Series 

A1 
A2 
A3 
A4 
A5 

B1 
B2 
B3 
B4 
B5 

Cl 
C2 
c 3  

D1 
0 2  
0 3  

/$I’ @’ w(l’ 

(em) (cm) (raws) 
5.5 1 . 1  3.062 
5.5 1 . 1  3.062 
5.5 1.1 3.065 
5.5 1.1 3.077 
5.5 1.1 3.063 

5.5 1 . 1  4.295 
5.5 1.1 4.065 
5.5 1.1 4.070 
5.5 1.1 4.071 
5.5 1 . 1  4.070 

8.0 1.6 4.294 
5.5 1.1 4.065 
3.5 0.7 4.295 

5.5 1.1 3.065 
3.5 0.7 3.065 
3.0 0.6 3.065 

(J4 

(raws) 
2.145 
2.296 
2.456 
2.618 
2.755 

3.372 
3.293 
3.455 
3.609 
3.762 

3.522 
3.293 
3.523 

2.456 
2.456 
2.456 

w 

(raws) x 
0.917 5.81 
0.766 4.05 
0.609 2.55 
0.459 1.44 
0.308 0.65 

0.923 5.57 
0.772 3.93 
0.615 2.48 
0.462 1.39 
0.308 0.62 

0.772 5.33 
0.772 3.93 
0.772 2.65 

0.609 2.55 
0.609 1.76 
0.609 1.55 

TABLE 1. Short-wave characteristics for the experiments by Kostense (1984). The listed X-values 
(based on yo = 0.4) differ a little from the ones used by Kostense, owing to his neglect of short-wave 
shoaling. 

mean break-point position. A thorough comparison with the theory of Symonds et al. 
is given in Schgffer (1990). 

4.5. Comparison with laboratory experiments by Kostense (1984) 
A series of high-quality laboratory experiments on long waves forced by short-wave 
groups, conducted a t  the Delft Hydraulics Laboratory, we reported by Kostense in 
1984. Fortunately his experimental set-up exactly meets the assumptions behind the 
present theoretical model. This applies t o  the bottom profile as well as to the incident 
short-wave groups, and his measurements include the respective amplitudes of the 
incident, bound, long wave and the seaward progressive, free, long wave. The 
movement of the wave-maker paddle included second-order generation as well as 
active absorption of free, long waves returning to the wavemaker. Consequently, 
standing waves arising from the reflection of free, long waves a t  the paddle were 
avoided, and the measurements provide an excellent test of the present theory. 

Five series of experiments are reported, and the first four of these correspond to 
a short-wave modulation parameter of 6 = 0.2. This meets our assumptions of 
6 4 1, considering the limited accuracy expected from the theoretical model owing 
to the complicated physical mechanisms in question. The characteristics of the 
incident short waves for these four series (A-D) are given in table 1. Here (a;), a r ) )  
and ( w ( l ) , d 2 ) )  are the amplitudes (over the shelf) and angular frequencies of 
the two wave trains, w is the difference frequency (group frequency), and x is the 
parameter defined by (4.56). In  the fifth experimental run 6 equals 0.8, and no 
comparison is made. 

The relevant parameters describing the geometry of the experimental facility are 
the depth h, = 0.5 m on the shelf and the beach slope h, = 0.05. 

In series A and B the short-wave amplitudes are kept constant while the difference 
frequency w is changed, and vice versa in series C and D. The resulting amplitude of 
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( Y ~ , K )  = (0.4,l.O). 

the incident, bound, long wave I&, I compares very well with theory (Figure 4.22, 
Schaffer 1990). The excellent agreement is indeed a manifestation of the thoroughness 
of the experiments. The theory of the bound, long wave (also contained in the present 
theory) is due to Longuet-Higgins & Stewart (1962, 1964). Kostense presents a 
similar comparison based on an equivalent formulation given by Ottsen Hansen 
(1978). 

We now turn to the results for the amplitude of the outgoing, free, long wave 
I & \ ,  the generation of which is far more complex. The physical mechanisms of 
generation involve complicated surf zone dynamics, and thus the results of the 
mathematical model can hardly be expected to match the measurements as closely 
as the results for the bound, long wave. Two aspects of the model may be expected 
to give a one-sided error, one being the neglect of frictional effects, and the other the 
neglect of energy feed-back to the short waves. The primary consequence of the lack 
of energy feed-back is an overestimation of the radiation stress giving too large a 
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break-point position versus x for series A ,  and B. Comparison with the theory of Symonds et al. 
(1982) (---). (a) (yo, K )  = (0.4,l.O) and (b )  (yo, K )  = (0.47 -0.53,1.09) as given by the dashed curve 
for h, = & in figure 4. 

forcing of both the dynamic set-down and the dynamic set-up. On top of this, friction 
affects the wave field as a whole. These arguments are slightly blurred by the fact 
that the infragravity wave is an interference pattern of which the components may 
be more or less affected by one of both of the above mentioned aspects. Still we can 
expect the model to generally overestimate the long-wave activity. 

Figure 14 compares I&I (at the shelf) from the theory and measurements, and the 
qualitative agreement is seen to be good. Furthermore, we recognize the 
expected overestimation, which for most runs is approximately 50-100 % , 

In  order to compare with the theory of Symonds et al. (1982) we have used Green's 
law to assign the computed as well as the measured values of &I to their values 

(Xb)l at the break point. Furthermore, I& (%,)I was normalized by the variation about 
the mean of the stationary shoreline set-up for infinitely long groups, denoted AC. 
The results are shown in figure I5(a) .  The figure also shows the theoretical curve of 
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Symonds et al., which is seen to  be inadequate. Here (yo,  K )  = (0.4, 1.0) was used. 
Figure 15(b) is equivalent to figure 15(a), only the results are based on (2.47), which 
gives yo-values ranging from 0.47 to 0.53 and K = 1.09. The general picture is seen to  
be the same, although the overestimation at some points is slightly larger for 
K = 1.09. This is, however, due to an increase in the 7,-values rather than the change 
in K .  For K = 1.09 and yo = 0.4 (not shown) a slightly better accordance with 
measurements is obtained. Generally, larger 7,-values give smaller breaker depths 
resulting in an increase in the bound, long wave contribution as well as an increase 
in bhe dynamic set-up, their sum being affected by the change of phase difference 
given through x. 

For the experimental results Kostense showed that the correlation between 
and l&,l is very poor (as could be expected). This also applies to  our theoretical 
results, see Schgffer & Jonsson (1990). 

The theoretical &-values of this section were calculated with the assumptions of 
full long-wave reflection from the coastline. Introducing partial shoreline reflection 
(see $4.5 of SchLffer 1990) gives a 10% reduction of the theoretical I&l-value in the 
first run of series A ,  the rest of the runs being unchanged. Thus no conclusions are 
changed. 

Kostense mentions three possible reasons for the limited validity of the theory by 
Symonds et al. These are the neglect of the incident, bound, long wave, the preclusion 
of short-wave grouping inside the surf zone, and the assumption of full long-wave 
reflection at the shoreline. The present model accounts for all these effects, and 
particularly inclusion of the incident, bound, long wave is of great importance. The 
next step towards a correct mathematical model should be the inclusion of energy 
feed-back to the short waves and frictional effects such as turbulence in the surf zone 
and bottom friction. 

5. Conclusions 
A theoretical model for infragravity waves generated by normally or obliquely 

incident short-wave groups over a one-dimensional topography has been established. 
For the special case of normal incidence on a plane sloping beach the solutions have 
been presented. 

In addition to the incident, bound, long wave the model accounts for the time- 
varying position of the initial break point as well as a (partial) transmission of 
grouping into the surf zone. The break-point oscillations produce a dynamic set-up, 
while the weak short-wave grouping in the surf zone gives a forcing equivalent to  the 
one that takes place outside the surf zone. The amplitude of the break-point 
oscillations and the degree of transmission of short-wave grouping have a mutual 
dependence which is modelled by a parameter K ,  and for physically relevant K-values 
the effect of grouping in the surf zone is inferior to the dynamic set-up. Furthermore, 
the dynamic set-up and the incident, bound, long wave are shown to he of almost 
equal importance, and it is found that they counteract each other to some extent. 
This is physically comprehensible, since we can regard the incident, bound, long 
wave as a dynamic set-down. 

The parameter K is determined by the extent of the break-point oscillations owing 
to the short,-wave grouping. To this end no experimental data are available, and 
experiments are needed. However, an estimate of K has been obtained from 
experimental results for regular waves. 
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The solution for the infragravity wave exhibits a roughly linear (or weaker) 
dependence on the short-wave steepness. This is in accordance with field observations 
and it contradicts earlier qualitative explanations for infragravity waves relying 
solely on second-order progressive wave theory. 

The model is in qualitative agreement with laboratory experiments, and even the 
quantitative results are fairly good considering that frictional effects are neglected. 

Professor I. G. Jonsson is gratefully acknowledged for stimulating discussions and 
comments, and for his help with the preparation of this manuscript. Furthermore, I 
am indebted to Professor I. A. Svendsen, who introduced me to the field of wave 
hydrodynamics and also initiated the present research. This work was conducted 
while I was a research student at the Institute of Hydrodynamics and Hydraulic 
Engineering, Technical University of Denmark. 
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